

Asymmetric Cryptography,
Data Integrity,
Hybrid Cryptosystems

Symmetric Cryptography: Terms

Cipher

Key, K

Ciphertext,
C=EK(P)

Plaintext, P Encryption
Algorithm,

EK(P)
Original content Encrypted content

The same key is used for encryption and decryption

Communicating with symmetric cryptography

Both parties must agree on a secret key, K

Key distribution must be secret

Alice

EK(P) DK(C)

Bob

Key Distribution

Secure key distribution is the biggest
problem with symmetric cryptography

Public Key Cryptogaphy

McCarthy’s Spy Puzzle (1958)

The setting

• Two countries are at war

• One country sends spies to the other country

• To return safely, spies must give the border guards a password

Conditions

• Spies can be trusted

• Guards chat – the information given to them may leak

McCarthy’s Spy Puzzle

Challenge

How can a border guard authenticate a person without knowing the password?

Enemies cannot use the guard’s knowledge to introduce their own spies

Solution to McCarthy’s puzzle

Use a one-way function, B = f (A)

– Guards get B
• Enemy cannot compute A if they discover B

– Spies give A, guards compute f(A)
• If the result is B, the password is correct.

One-way functions

Easy to compute in one direction

Difficult (infeasible) to compute in the other

Example: Middle Squares

A = 18932442986094014771

A2 = 358437397421700454779607531189166182441

Middle square, B = 42170045477960753118

Given A, it is easy to compute B

Given B, it is difficult to compute A

Other One-Way functions

• Discrete exponentiation – discrete logarithms
– y = gx mod p
– Easy to compute for large values of p
– Hard to find x even when given y, g, and p

• Elliptic curve multiplication
– Given a number k and point P on an elliptic curve and Q = kP
– Easy to compute Q but not feasible to recover k from P and Q

Trapdoor functions

Trapdoor function
– Easy to compute in one direction
– The inverse is difficult to compute without extra information

Trapdoor functions

Trapdoor function
– Easy to compute in one direction
– The inverse is difficult to compute without extra information

96171919154952919 is the product of two prime #s.

What are they?

Trapdoor functions

Trapdoor function
– Easy to compute in one direction
– The inverse is difficult to compute without extra information

96171919154952919 is the product of two prime #s.

If you know one of them is 100225441
 … then it’s easy to compute the other: 959555959

Public-key cryptography

Two related keys:

 C = EK1(P) P = DK2(C)

 C′ = EK2(P) P = DK1(C′)

Examples:
RSA, Elliptic Curve Cryptography (ECC),
DSS (digital signature standard), Diffie-Hellman

K1 is a public key
K2 is a private key

RSA Public Key Cryptography

Ron Rivest, Adi Shamir, Leonard Adleman — 1977

Each user generates two keys:
Private key (kept secret)
Public key (can be shared with anyone)

Difficulty of algorithm based on the difficulty of factoring large numbers

RSA algorithm: key generation

1. Choose two random large prime numbers p, q 3, 11

RSA algorithm: key generation

1. Choose two random large prime numbers p, q

2. Compute the product n = pq and 𝜙(n) = (p - 1)(q - 1)

3, 11

(3-1) x (11-1) = 20

RSA algorithm: key generation

1. Choose two random large prime numbers p, q

2. Compute the product n = pq and 𝜙(n) = (p - 1)(q - 1)

3. Choose the public exponent, e, such that:
 1 < e < 𝜙(n) and gcd(e, 𝜙(n)) = 1

3, 11

(3-1) x (11-1) = 20

Choose e=7

RSA algorithm: key generation

1. Choose two random large prime numbers p, q

2. Compute the product n = pq and 𝜙(n) = (p - 1)(q - 1)

3. Choose the public exponent, e, such that:
 1 < e < 𝜙(n) and gcd(e, 𝜙(n)) = 1

4. Compute the secret exponent, d such that:
 ed = 1 mod 𝜙(n)
 d = e-1 mod ((p - 1) (q - 1))

3, 11

(3-1) x (11-1) = 20

Choose e=7

Find d: 7d = 1mod 20
7 x 3 = 21 ≡ 1 mod 20

d = 3

RSA algorithm: key generation

1. Choose two random large prime numbers p, q

2. Compute the product n = pq and 𝜙(n) = (p - 1)(q - 1)

3. Choose the public exponent, e, such that:
 1 < e < 𝜙(n) and gcd(e, 𝜙(n)) = 1

4. Compute the secret exponent, d such that:
 ed = 1 mod 𝜙(n)
 d = e-1 mod ((p - 1) (q - 1))

5. Public key = (e, n)
 Private key = (d, n)
 Discard p, q, 𝜙(n)

3, 11

(3-1) x (11-1) = 20

Choose e=7

Find d, 7d = 1mod 20
7 x 3 = 21 ≡ 1 mod 20

d = 3

Pub key = (3, 33)
Pri key = (7, 33)

RSA Encryption

Key pair: public key = (e, n)
 private key = (d, n)

Encrypt
– Divide data into numerical blocks < n
– Encrypt each block:

 c = me mod n

Decrypt

 m = cd mod n

Pub key = (3, 33)
Pri key = (7, 33)

Encrypt 18 with public key:
 183 mod 33 = 24
Decrypt 24 with private key:
 247 mod 33 = 18

Encrypt 29 with private key:
 297 mod 33 = 17
Decrypt 17 with public key:
 173 mod 33 = 29

RSA security

The security rests on the difficulty of factoring a large integer

 Public key = { exponent, modulus }, or { e, n }

If you know the public key (3, 33), can you derive the private key?

RSA Security

Large keys make it difficult to find factors via an exhaustive search

Example: a 2048-bit modulus (n) and secret exponent (d):
n =
0xa709e2f84ac0e21eb0caa018cf7f697f774e96f8115fc2359e9cf60b1dd8d4048d974cdf8422bef6be3c162b0
4b916f7ea2133f0e3e4e0eee164859bd9c1e0ef0357c142f4f633b4add4aab86c8f8895cd33fbf4e024d9a3ad6
be6267570b4a72d2c34354e0139e74ada665a16a2611490debb8e131a6cffc7ef25e74240803dd71a4fcd953
c988111b0aa9bbc4c57024fc5e8c4462ad9049c7f1abed859c63455fa6d58b5cc34a3d3206ff74b9e96c336db
acf0cdd18ed0c66796ce00ab07f36b24cbe3342523fd8215a8e77f89e86a08db911f237459388dee642dae7cb
2644a03e71ed5c6fa5077cf4090fafa556048b536b879a88f628698f0c7b420c4b7

d =
0x10f22727e552e2c86ba06d7ed6de28326eef76d0128327cd64c5566368fdc1a9f740ad8dd221419a5550fc8
c14b33fa9f058b9fa4044775aaf5c66a999a7da4d4fdb8141c25ee5294ea6a54331d045f25c9a5f7f47960acba
e20fa27ab5669c80eaf235a1d0b1c22b8d750a191c0f0c9b3561aaa4934847101343920d84f24334d3af05fed
e0e355911c7db8b8de3bf435907c855c3d7eeede4f148df830b43dd360b43692239ac10e566f138fb4b30fb1a
f0603cfcf0cd8adf4349a0d0b93bf89804e7c2e24ca7615e51af66dccfdb71a1204e2107abbee4259f2cac917fa
fe3b029baf13c4dde7923c47ee3fec248390203a384b9eb773c154540c5196bce1

Elliptic Curve Cryptography (ECC)

Key Generation
Using discrete numbers, pick

– A prime number as a maximum (modulus)

– A curve equation in the family
 y2 = x3 + ax + b (mod p)

 where p is a large prime number

– A public base point on the curve, G

– Private key: random integer, d

– Public key: computed from the private key,
the base point, and the curve: dG

Catalog of elliptic curves

ECC vs. RSA

• RSA is still a widely used public key cryptosystem (but fading)
– Inertia & widespread implementations
– Simpler implementation

• ECC offers higher security with fewer bits than RSA
– ECC is faster for key generation & encryption
– Uses less memory
– NIST defines 15 standard curves for ECC

• But many implementations support only a couple (P-256, P-384)

Key length

Unlike symmetric cryptography,
not every number is a valid key with RSA

Comparable complexity:
–3072-bit RSA = 256-bit elliptic curve = 128-bit symmetric cipher
–15360-bit RSA = 512-bit elliptic curve = 256-bit symmetric cipher

For long-term security, ENISA (EU) and NIST (US) recommend:

AES: 256-bit keys RSA: 15,360-bit keys ECC: 512 bit-keys

Communication with public key algorithms

Different keys for encrypting and decrypting
No need to worry about key distribution!

EB(P) Db(C)

Alice Bob
Alice’s public key: KA

Bob’s public key: KB

Da(C) EA(P)

decrypt message with
Alice’s private key

encrypt message with
Alice’s public key

encrypt message with
Bob’s public key

decrypt message with
Bob’s private key

Communication with public key algorithms

(Alice’s private key: Ka) (Bob’s private key: Kb)

Why Not Use Public Key Algorithms for All Encryption?

• Slow Performance

• Ciphertext expansion

• Vulnerability to chosen plaintext attacks (or guessing)

• Some algebraic relationships may be preserved

Integrity:
Cryptographic Hash Functions

Cryptographic hash functions - Properties

– Fixed-length output

– Deterministic

– Preimage resistant: Given H, it should be infeasible to find M such that H=hash(M)

– Second preimage resistant:
 Given M1, it should be infeasible to find M2 such that hash(M1)=hash(M2)

– Collision resistant: It should be infeasible to find M, M’ such that hash(M) = hash(M’)

– Uniform

– Avalance effect

– Efficient

Also called digests or fingerprints

Hash functions are the basis of integrity

• Not encryption

Hash functions are the basis of integrity

• Not encryption

• Can help us to detect:

– Masquerading:
• Insertion of message from a fraudulent source

– Content modification:
• Changing the content of a message

– Sequence modification:
• Inserting, deleting, or rearranging parts of a message

– Replay attacks:
• Replaying valid sessions

Hash Algorithms

Use iterative structure like block ciphers do … but use no key

• Example:
– Secure Hash Algorithm, SHA-1

• US standard for use with NIST Digital Signature Standard (DSS) – 160-bit hash

Hash Algorithms

Use iterative structure like block ciphers do … but use no key

• Example:
– Secure Hash Algorithm, SHA-1

• Produces 160-bit hash values

• Successors
– SHA-2 (2001) – SHA-224, SHA-256, SHA-384, SHA-512

• Approved for use with the NIST Digital Signature Standard (DSS)

– SHA-3 (2015)
• Can be substituted for SHA-2

Example: SHA-1 Overview

• Prepare the message
– Append the bit 1 to the message
– Pad message with 0 bits so its length = 448 mod 512
– Append length of message as a 64-bit big endian integer

Example: SHA-1 Overview

• Prepare the message
– Append the bit 1 to the message
– Pad message with 0 bits so its length = 448 mod 512
– Append length of message as a 64-bit big endian integer

• Use an Initialization Vector (IV) = 5-word (160-bit) buffer:
 a = 0x67452301 b = 0xefcdab89 c = 0x98badcfe

 d = 0x10325476 e = 0xc3d2e1f0

Example: SHA-1 Overview

• Prepare the message
– Append the bit 1 to the message
– Pad message with 0 bits so its length = 448 mod 512
– Append length of message as a 64-bit big endian integer

• Use an Initialization Vector (IV) = 5-word (160-bit) buffer:
 a = 0x67452301 b = 0xefcdab89 c = 0x98badcfe

 d = 0x10325476 e = 0xc3d2e1f0

• Process the message in 512-bit chunks – 80 rounds
– Expand the 16 32-bit words into 80 32-bit words via XORs & shifts
– Iterate 80 times to create a hash for this chunk
– Add this hash chunk to the result so far

SHA-2 Overview

256-bit
Initialization

Vector (IV)

512-bits of
message

Hash
compression

Next 512-bits
of message

Hash
compression

Last 512-bits of
message

Hash
compression

256-bit hash
IV bits defined by the standard

64 rounds (256-bit hash)
80 rounds (512-bit hash)

Popular (& formerly popular) Hash Functions

MD5 • 128 bits
• Linux passwords used to use this

SHA-1 • 160 bits – was widely used: checksum in Git & torrents

SHA-2

• Designed by the NSA; published by NIST
• Variations: SHA-224, SHA-256, SHA-384, SHA-512
• Linux passwords (SHA-512)
• Bitcoin (SHA-256)

SHA-3 • 256 & 512 bit

bcrypt • Blowfish cipher used for bcrypt password hashing in OpenBSD

3DES • Linux passwords used to use this

Believed to be secure

Believed to be secure

Designed to be slow!

Git also supports SHA-256

Hash Collisions

Hashes are collision resistant, but collisions can occur

Pigeonhole principle
– A hash is a fixed-size number of bits

– Every possible permutation of an arbitrary number
of bytes cannot fit into every permutation of 32 bytes!

Collisions: The Birthday Paradox

How many people need to be in a room such that the probability that two
people will have the same birthday is > 0.5?

Your guess before you took a probability course: 365 ÷ 2 = 183

Collisions: The Birthday Paradox

How many people need to be in a room such that the probability that two
people will have the same birthday is > 0.5?

Your guess before you took a probability course: 365 ÷ 2 = 183

Answer: 23

𝑝 𝑛 = 1 −
𝑛! ∙

365
𝑛

365𝑛

Approximate solution for # people required to have a 0.5
chance of a shared birthday, where m = # days in a year

𝑛

≈ 2 × 𝑚 × 0.5

The Birthday Paradox: Implications

Searching for a collision with a pre-image (known message) is
A LOT harder than searching for two messages that have the
same hash

Strength of a hash function is approximately ½ (# bits)
– For SHA-256, # operations =

 2128 = 3.4×1038

This shows why collisions are guaranteed in theory but practically
unachievable in secure hash functions

Data Integrity

How do we detect that a message has been tampered?

• A cryptographic hash acts as a strong checksum

• Associate a hash with a message
 – we’re not encrypting the message
 – we’re concerned with integrity, not confidentiality

• If two messages hash to different values, we know the messages are
different

H(M) ≠ H(M′)
But an attacker can create a new hash for a modified message

Integrity:
Message Authentication Codes and
Digital Signatures

MAC (also called a Keyed Hash)

Create a checksum that relies on a key for validation

Message Authentication Code (MAC)

Two forms:
 hash-based & block cipher-based

HMAC: Hash-based MAC – RFC 2104

A MAC can be created from a cryptographic hash function

HMAC = Hash-based Message Authentication Code
HMAC(m, k) = H((opad ⊕ k) || H(ipad ⊕ k) || m))

where

 H = cryptographic hash function

 opad = outer padding 0x5c5c5c5c … (01011100…)

 ipad = inner padding 0x36363636… (00110110…)

 k = secret key

 m = message

 ⊕ = XOR, || = concatenation

Basically, incorporate a key into the message before hashing it

Block Cipher Based MAC: CBC-MAC and CMAC

MAC = final ciphertext block – others are discarded

Block cipher

Plaintext0IV = 0

Ciphertext0

⊕

Key Block cipher

Plaintext1

⊕

Key

Block 0 Block 1

Block cipher

PlaintextN

⊕

Key

Block N

Ciphertext1 CiphertextN

CMAC – Cipher-based Message Authentication Code

Using a MAC

Message
m

MAC

HMAC(m, k)

Message
m′

MAC′

Alice Bob

modification?

MAC″Compute MAC(m′, k):

Both have the shared key, k

Authenticated Encryption with Associated Data (AEAD)

Encryption + Integrity in one step

AEAD adds an authentication tag to the ciphertext

Two popular types
– AES-GCM: CTR mode + hash
– ChaCha20-Poly1305: 128-bit tag – f(message and derived key)

Digital Signatures

MACs rely on a shared key
Anyone with the key can modify the message and create the correct MAC

Digital Signatures

MACs rely on a shared key
Anyone with the key can modify the message and create the correct MAC

Digital signature properties

– Only you can sign a message, but anyone can validate it

– You cannot copy the signature from one message to another

– If the message is modified, the signature will be invalid

– An adversary cannot forge a signature

Digital Signature Primitives

1. Key generation
 { secret_key, verification_key } := gen_keys(key_size)

2. Signing
 signature := sign(message, secret_key)

3. Validation
 is_valid := verify(verification_key, message, signature)

Digital Signature Primitives

1. Key generation
 { secret_key, verification_key } := gen_keys(key_size)

2. Signing
 signature := sign(message, secret_key)

3. Validation
 is_valid := verify(verification_key, message, signature)

We sign hash(message) instead of the message
– We’d like the signature to be a small, fixed size

– We may not need to hide the contents of the message

– We trust hashes to be collision-free

Digital Signatures & Public Key Cryptography

Public key cryptography enables digital signatures
secret_key = private key
verification_key = public key

Alice encrypts a message with her private key

Anyone can decrypt it using her public key

Nobody but Alice can create S

S = Ea(M)

DA(S) = DA(Ea(M)) = M

Alice Bob

Alice generates a hash of the message, H(P)

Conceptual View of Using Digital Signatures

H(P)

H(P)

Alice Bob

Alice encrypts the hash with her private key
This is her signature

Conceptual View of Using Digital Signatures

S=Ea(H(P))

H(P)

Alice Bob

Alice sends Bob the message & the encrypted hash

Conceptual View of Using Digital Signatures

S=Ea(H(P))

modification?

H(P)

Alice Bob

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sent by Alice

Conceptual View of Using Digital Signatures

S=Ea(H(P))

H(P)

DA(S)

modification?

H(P)

Alice Bob

If the hashes match, the signature is valid
⇒ the encrypted hash must have been generated by Alice

Conceptual View of Using Digital Signatures

S=Ea(H(P))

H(P)

DA(S)

modification?

Popular Digital Signature Algorithms

Digital Signature Algorithms improve security vs. public key encryption

DSA: Digital Signature Algorithm

ECDSA: Elliptic Curve Digital Signature Algorithm

EdDSA: Edwards-curve Digital Signature Algorithm

• signature: S := Epri_key(H(M))

• verification = H(M) ≟ Dpub_key(S)

Message

Hash function

Hash

Signing algorithm

Signature

Digital signatures & non-repudiation

Digital signatures provide

• Non-repudiation

• Proof of integrity

Public Keys as Identities

A public signature verification key can be treated as an identity

Certificates: Identity Binding

Identity Binding

• How does Alice know Bob’s public key is really his?

• Get it from a trusted server?

Identity Binding – Another Option

• Have a trusted party sign Bob’s public key

• Once signed, it is tamper-proof

• But we need to know it’s Bob’s public key and who signed it
– Create & sign a data structure

”I am Bob”

My key: KB

Trent says its Bob

A:

B:

C:

Sig(A,B,C)Trent

Everyone trusts Trent

X.509 Certificates

ISO introduced a set of authentication protocols

X.509: Structure for public key certificates:

X.509 v3 Digital Certificate

Certificate data Signature

Subject
Distinguished name Public key

(algorithm & key)

version serial # Signature
algorithm

Issuer
Distinguished

Name

Validity
(from-to)

Signature
(signed by CA)

Issuer = Certificate Authority (CA)

User’s name or domain, organization, locality, state, country, etc.

X.509 certificates

To validate a certificate
Verify its signature:
1. Get the issuer (CA) from the certificate
2. Validate the certificate’s signature against

the issuer’s public key
– Hash contents of certificate data (SHA-256)
– Use CA’s public key to validate the CA’s signature

Obtain CA’s public key (certificate) from trusted source

Certificates prevent someone from using a phony public key
to masquerade as another person/company

…if you trust the CA

Certificate Authorities (CAs)

How do you know the public key of the CA?
You can get it from another certificate! ⇒ this is called certificate chaining

Name: Rutgers University CA

Public key: c1f07f8aac9d…

Issuer: State of NJ CA

Signature: 5c062ee261…

Name: Bob

Public key: abac6cfbd…

Issuer: Rutgers University CA

Signature: 25d0527b9f…

Name: State of NJ CA

Public key: 33346da91…

Issuer: US Certification Authority

Signature: e693eac849…

Name: US Certification Authority

Public key: 9f0f544f163…

Issuer: US Certification Authority

Signature: 20fac7079f0…

Root Certificate

Certificate Authorities (CAs)

But trust must start somewhere

You need a public key you can trust – this is the root certificate
– Apple Keychain
– Windows Certificate Store via the Microsoft Management Console (mmc)
– Android Credential Storage

Key revocation

• Used to invalidate certificates before expiration time

• Certificate revocation list (CRL)

• Problems
– Authorization
– Delivery/synchronization
– Client attention

Code Integrity

We can sign code as well

• Validate integrity of the code
– If the signature matches, then the code has not been modified

• Enables
– Distribution from untrusted sources
– Distribution over untrusted channels
– Detection of modifications by malware

• Signature = encrypted hash signed by trusted source
– Does not validate the code is good … just where it comes from

Code Integrity: signed software

• Windows since XP: Microsoft Authenticode
– SignTool command
– Hashes stored in system catalog or signed & embedded in the file
– Microsoft-tested drivers are signed

• macOS
– codesign command
– Hashes & certificate chain stored in file

• Also Linux, Android, & iOS

Code signing: Microsoft Authenticode
• A format for signing executable code (dll, exe, cab, ocx, class files)

• Software publisher:
– Generate a public/private key pair
– Get a digital certificate from a certification authority (CA) that is enrolled in the Microsoft Trusted Root

Certificate Program
– Generate a hash of the code to create a fixed-length digest
– Encrypt the hash with your private key
– Combine digest & certificate into a Signature Block
– Embed Signature Block in executable

Per-page hashing

• Integrity check when program is first loaded

• Per-page signatures – improved performance

– Check hashes for every page upon loading (demand paging)

• Per-page hashes can be disabled optionally on both Windows and
macOS

Windows code integrity checks

• Implemented as a file system driver
– Works with demand paging from executable
– Check hashes for every page as the page is loaded

• Hashes stored in system catalog or embedded in file along with X.509
certificate

• Check integrity of boot process
– Kernel code must be signed or it won’t load
– Drivers shipped with Windows must be certified or contain a certificate from

Microsoft

Diffie-Hellman Key Exchange (DHKE)

Diffie-Hellman Key Exchange (DHKE)

Key distribution algorithm

– Share a secret key over a non-secure channel

– Based on the difficulty of computing discrete logarithms in a finite field vs. the ease
of calculating exponents

Negotiate a secret common key without fear of eavesdroppers

Diffie-Hellman Key Exchange (DHKE)

• All arithmetic performed in a
field of integers modulo some large number

• Both parties agree on
1. a large prime number p
2. and a number  < p

• Each party generates a public/private key pair

 Private key for user i: Xi

 Public key for user i: Yi = piX mod

Diffie-Hellman Key Exchange (DHKE)

• Alice has secret key XA

• Alice sends Bob public key YA

• Alice computes

• Bob has secret key XB

• Bob sends Alice public key YB

K = (Bob’s public key) (Alice’s private key) mod p

pYK AX

B mod=

Diffie-Hellman Key Exchange (DHKE)

• Alice has secret key XA

• Alice sends Bob public key YA

• Alice computes

• Bob has secret key XB

• Bob sends Alice public key YB

• Bob computes

K’ = (Alice’s public key) (Bob’s private key) mod p

pYK BX

A mod=pYK AX

B mod=

Diffie-Hellman Key Exchange (DHKE)

• Alice has secret key XA

• Alice sends Bob public key YA

• Alice computes

• expanding:

• Bob has secret key XB

• Bob sends Alice public key YB

• Bob computes

• expanding:

K is a common key, known only to Bob and Alice

K = K’

pYK AX

B mod= pYK BX

A mod=

pp AB XX mod)mod(=

pYK AX

B mod=

pAB XX mod=

pYK BX

B mod=

pp BA XX mod)mod(=

pBA XX mod=

Diffie-Hellman simple example

• Alice’s secret key XA = 300

• Alice’s public key YA = 57300 mod p = 282

• Alice computes

• Bob’s secret key XB = 25

• Bob’s public key YB = 5725 mod p = 1046

• Bob computes

Given p=1151, α=57, YA=282, YB=1046, you cannot get 105

pYK AX

B mod= pYK BX

A mod=

Assume p=1151, α=57

= 1046300 mod p = 28225 mod p

K = 105 K = 105

Why are we sill looking at this?

Why not just use RSA or ECC to encrypt a random key?

CS 419: Computer Security

Hybrid Cryptosystems

Strengths & Weaknesses

• Public key algorithms:
– Good at exchanging secrets
– Bad at encrypting large amounts of data

• Symmetric algorithms:
– Good at bulk encryption but require a shared key

Hybrid Cryptosystems

• Session key: randomly-generated key for one communication session

• Use a public key algorithm to send the session key

• Use a symmetric algorithm to encrypt data with the session key

Public key algorithms are never used to encrypt messages
– MUCH slower; vulnerable to chosen-plaintext and algebraic attacks

K EB(K)

Alice Bob

Bob’s public key: KB

encrypt session key with
Bob’s public key

K = Db(EB(K))

Communication with a hybrid cryptosystem

Pick a random session key, K

K

Bob decrypts K with
his private key

Now Bob knows the secret session key, K

EK(P) DK(C)

Alice Bob

Bob’s public key: KB

encrypt message using a
symmetric algorithm and

key K

decrypt message using a
symmetric algorithm and

key K

Communication with a hybrid cryptosystem

K = Db(EB(K))EB(K)

EK(P) DK(C)

Alice Bob

Bob’s public key: KB

decrypt message using a
symmetric algorithm and

key K

encrypt message using a
symmetric algorithm and

key K

Communication with a hybrid cryptosystem

EB(K) K = Db(EB(K))

DK(C′) EK(P′)

Forward Secrecy

Private keys need to be protected

Suppose an attacker steals Bob’s private key
– Future & past messages can be compromised

Security rests entirely on the secrecy of Bob's private key

Pick a session key &
encrypt it with the Bob's public key

Bob decrypts the session key
with his private key

Forward Secrecy

Forward secrecy

– Compromise of long-term keys does not compromise past session keys

– There is no one secret to steal that will compromise multiple messages

Achieving Forward Secrecy

Use ephemeral keys for key exchange
+ session keys for communication

Diffie-Hellman key exchange is commonly used for key exchange
– Generate a set of keys per session
– Not recoverable as long as private keys are thrown away

Long-term key: Used for identity verification, authentication

Ephemeral key:
Used for establishing a session key – thrown away immediately

Session key: Used to encrypt data for a single session

EK(P) DK(C)

Alice Bob

Bob’s D-H public key: YB

decrypt message using a
symmetric algorithm and

key K

encrypt message using a
symmetric algorithm and

key K

Communication with a hybrid cryptosystem (DHKE)

DK(Cʹ) EK(Pʹ)

Alice's D-H public key: YA

Create a random Diffie-Hellman key pair: XA, YA Create a random Diffie-Hellman key pair: XB, YB

𝐶 = 𝑌𝐵
𝑋𝐴mod p

𝐶 = 𝑌𝐴
𝑋𝐵mod p

C Key derivation K C Key derivation K

Cryptographic systems: summary

• Symmetric ciphers
– Based on SP-networks (usually) = substitution & permutation sequences

Cryptographic systems: summary

• Symmetric ciphers
– Based on SP-networks (usually) = substitution & permutation sequences

• Asymmetric ciphers – public key cryptosystems
– Based on trapdoor functions

Cryptographic systems: summary

• Symmetric ciphers
– Based on SP-networks (usually) = substitution & permutation sequences

• Asymmetric ciphers – public key cryptosystems
– Based on trapdoor functions

• Hybrid cryptosystem
– Public key algorithm for key exchange, symmetric algorithm for messages

Cryptographic systems: summary

• Symmetric ciphers
– Based on SP-networks (usually) = substitution & permutation sequences

• Asymmetric ciphers – public key cryptosystems
– Based on trapdoor functions

• Hybrid cryptosystem
– Public key algorithm for key exchange, symmetric algorithm for messages

• Key establishment algorithms
– Diffie-Hellman
– Public key

Enables secure communication without
knowledge of a shared secret

Cryptographic systems: summary

• Symmetric ciphers
– Based on SP-networks (usually) = substitution & permutation sequences

• Asymmetric ciphers – public key cryptosystems
– Based on trapdoor functions

• Hybrid cryptosystem
– Public key algorithm for key exchange, symmetric algorithm for messages

• Key establishment algorithms
– Diffie-Hellman
– Public key

• Forward secrecy
– Establish session key via ephemeral keys

Enables secure communication without
knowledge of a shared secret

Looking ahead

Quantum Computers

IBMGoogle

University of
Science and

Technology of China

Quantum Computers & Cryptography

Once (if) useful quantum computers
can be built, they can:

• Factor efficiently
– Shor’s algorithm factors numbers

exponentially faster
– RSA will not be secure anymore

• Find discrete logarithms efficiently
– Diffie-Hellman key exchange & ECC will

not be secure

Not all is bad

Symmetric cryptography is largely
immune to attacks

Some optimizations are predicted:

Crack a symmetric cipher in 2n/2 vs. 2n iterations

Quantum-proofing cryptography

Quantum computing is not faster at everything
Only a few algorithms currently identified where quantum computing offers an advantage

31108953
104910828
3027417464
2376520867
2430217482

1190018662
2598220447
3006531459
804531264
1122428373

Which 3 numbers sum to
5656746864?

NIST Releases First Post-Quantum Encryption Standards

August 13, 2024: Releases first set of standards:
 CRYSTALS-Kyber, CRYSTALS-Dilithium, Sphincs+ and FALCON

1. FIPS 203 - ML-KEM
Module-Lattice-Based Key-Encapsulation Mechanism,
based on CRYSTALS-Kyber algorithm

2. FIPS 204 – ML-DS
Module-Lattice-Based Digital Signature Algorithm,
based on the CRYSTALS-Dilithium algorithm

3. FIPS 205 – SLH-DSA – backup to ML-DS
Stateless Hash-Based Digital Signature Algorithm)

4. (draft) FIPS 206 – FN-DSA
Fast-Fourier Transform over NTRU-Lattice-Based Digital Signature Algorithm

5. (2025 proposal) HQC – backup to ML-KEM
Key Encapsulation Mechanism based on error correcting codes

The End

The End

The End

The End

	Slide 1
	Slide 2
	Slide 3: Symmetric Cryptography: Terms
	Slide 4: Communicating with symmetric cryptography
	Slide 5: Key Distribution
	Slide 6
	Slide 7: McCarthy’s Spy Puzzle (1958)
	Slide 8: McCarthy’s Spy Puzzle
	Slide 9: Solution to McCarthy’s puzzle
	Slide 10: One-way functions
	Slide 11: Example: Middle Squares
	Slide 12: Other One-Way functions
	Slide 13: Trapdoor functions
	Slide 14: Trapdoor functions
	Slide 15: Trapdoor functions
	Slide 16: Public-key cryptography
	Slide 17: RSA Public Key Cryptography
	Slide 18: RSA algorithm: key generation
	Slide 19: RSA algorithm: key generation
	Slide 20: RSA algorithm: key generation
	Slide 21: RSA algorithm: key generation
	Slide 22: RSA algorithm: key generation
	Slide 23: RSA Encryption
	Slide 24: RSA security
	Slide 25: RSA Security
	Slide 26: Elliptic Curve Cryptography (ECC)
	Slide 28: ECC vs. RSA
	Slide 29: Key length
	Slide 30: Communication with public key algorithms
	Slide 31: Communication with public key algorithms
	Slide 32: Why Not Use Public Key Algorithms for All Encryption?
	Slide 33
	Slide 34: Cryptographic hash functions - Properties
	Slide 35: Hash functions are the basis of integrity
	Slide 36: Hash functions are the basis of integrity
	Slide 37: Hash Algorithms
	Slide 38: Hash Algorithms
	Slide 39: Example: SHA-1 Overview
	Slide 40: Example: SHA-1 Overview
	Slide 41: Example: SHA-1 Overview
	Slide 42: SHA-2 Overview
	Slide 43: Popular (& formerly popular) Hash Functions
	Slide 45: Hash Collisions
	Slide 46: Collisions: The Birthday Paradox
	Slide 47: Collisions: The Birthday Paradox
	Slide 48: The Birthday Paradox: Implications
	Slide 49: Data Integrity
	Slide 50
	Slide 51: MAC (also called a Keyed Hash)
	Slide 52: HMAC: Hash-based MAC – RFC 2104
	Slide 53: Block Cipher Based MAC: CBC-MAC and CMAC
	Slide 54: Using a MAC
	Slide 55: Authenticated Encryption with Associated Data (AEAD)
	Slide 56: Digital Signatures
	Slide 57: Digital Signatures
	Slide 58: Digital Signature Primitives
	Slide 59: Digital Signature Primitives
	Slide 60: Digital Signatures & Public Key Cryptography
	Slide 61: Conceptual View of Using Digital Signatures
	Slide 62: Conceptual View of Using Digital Signatures
	Slide 63: Conceptual View of Using Digital Signatures
	Slide 64: Conceptual View of Using Digital Signatures
	Slide 65: Conceptual View of Using Digital Signatures
	Slide 66: Popular Digital Signature Algorithms
	Slide 67: Digital signatures & non-repudiation
	Slide 68: Public Keys as Identities
	Slide 69: Certificates: Identity Binding
	Slide 70: Identity Binding
	Slide 71: Identity Binding – Another Option
	Slide 72: X.509 Certificates
	Slide 73: X.509 certificates
	Slide 74: Certificate Authorities (CAs)
	Slide 75: Certificate Authorities (CAs)
	Slide 76: Key revocation
	Slide 77: Code Integrity
	Slide 78: We can sign code as well
	Slide 79: Code Integrity: signed software
	Slide 80: Code signing: Microsoft Authenticode
	Slide 82: Per-page hashing
	Slide 83: Windows code integrity checks
	Slide 85
	Slide 86: Diffie-Hellman Key Exchange (DHKE)
	Slide 87: Diffie-Hellman Key Exchange (DHKE)
	Slide 88: Diffie-Hellman Key Exchange (DHKE)
	Slide 89: Diffie-Hellman Key Exchange (DHKE)
	Slide 90: Diffie-Hellman Key Exchange (DHKE)
	Slide 91: Diffie-Hellman simple example
	Slide 92: Why are we sill looking at this?
	Slide 93
	Slide 94: Strengths & Weaknesses
	Slide 95: Hybrid Cryptosystems
	Slide 96: Communication with a hybrid cryptosystem
	Slide 97: Communication with a hybrid cryptosystem
	Slide 98: Communication with a hybrid cryptosystem
	Slide 99: Forward Secrecy
	Slide 100: Private keys need to be protected
	Slide 101: Forward Secrecy
	Slide 102: Achieving Forward Secrecy
	Slide 103: Communication with a hybrid cryptosystem (DHKE)
	Slide 104: Cryptographic systems: summary
	Slide 105: Cryptographic systems: summary
	Slide 106: Cryptographic systems: summary
	Slide 107: Cryptographic systems: summary
	Slide 108: Cryptographic systems: summary
	Slide 109: Looking ahead
	Slide 110: Quantum Computers
	Slide 111: Quantum Computers & Cryptography
	Slide 112: Not all is bad
	Slide 113: Quantum-proofing cryptography
	Slide 114: NIST Releases First Post-Quantum Encryption Standards
	Slide 115
	Slide 116: The End
	Slide 118: The End
	Slide 120: The End
	Slide 122: The End

