

Asymmetric Cryptography,
Data Integrity,
Hybrid Cryptosystems

Symmetric Cryptography: Terms

l Key, K
— Cipher >
Plaintext, P Encryption Ciphertext,
Algorithm, C=E((P)
. Ex(P)
Original content Encrypted content

The same key is used for encryption and decryption

Communicating with symmetric cryptography

Both parties must agree on a secret key, K

EK(P);

Bob

DK(CQ

NN\

Alice

Key distribution must be secret

Key Distribution

Secure key distribution is the biggest
problem with symmetric cryptography

McCarthy’s Spy Puzzle (1958)

The setting
* Two countries are at war
* One country sends spies to the other country

* To return safely, spies must give the border guards a password

Conditions
* Spies can be trusted

* Guards chat - the information given to them may leak

McCarthy’s Spy Puzzle

Challenge

How can a border guard authenticate a person without knowing the password?

Enemies cannot use the guard’s knowledge to introduce their own spies

Solution to McCarthy’s puzzle

Use a one-way function, B=f(A)

— Guards getB

* Enemy cannot compute A if they discover B

— Spies give A, guards compute f(A)

* |[fthe resultis B, the password is correct.

One-way functions

Easy to compute in one direction

Difficult (infeasible) to compute in the other

Example: Middle Squares

A =18932442986094014771
A? =358437397421700454779607531189166182441
Middle square, B=42170045477960753118

Given A, itis easyto compute B

Given B, it is difficult to compute A

Other One-Way functions

* Discrete exponentiation — discrete logarithms
— y=g‘modp
— Easy to compute for large values of p
— Hard to find x even when giveny, g, and p

* Elliptic curve multiplication

— Given a number k and point P on an elliptic curve and Q = kP
— Easyto compute Q but not feasible to recover k from P and Q

Trapdoor functions

Trapdoor function
— Easyto compute in one direction
— Theinverse is difficult to compute without extra information

Trapdoor functions

Trapdoor function
— Easyto compute in one direction
— Theinverse is difficult to compute without extra information

96171919154952919 is the product of two prime #s.

What are they?

Trapdoor functions

Trapdoor function
— Easyto compute in one direction
— Theinverse is difficult to compute without extra information

96171919154952919 is the product of two prime #s.

If you know one of them is 100225441
... then it’s easy to compute the other: 959555959

Public-key cryptography

Two related keys:

C=Eq(P) P=Dyy(C) } K, is a public key

C'=E,,(P) P=Dy(C’ K, is a private key

Examples:

RSA, Elliptic Curve Cryptography (ECC),
DSS (digital signature standard), Diffie-Hellman

RSA Public Key Cryptography

Ron Rivest, Adi Shamir, Leonard Adleman — 1977

Each user generates two keys:
Private key (kept secret)
Public key (can be shared with anyone)

Difficulty of algorithm based on the difficulty of factoring large numbers

RSA algorithm: key generation

1. Choose two random large prime numbers p, g 3, 11

RSA algorithm: key generation

1. Choose two random large prime numbers p, g 3,11

2. Compute the product n=pgand ¢(n)=(p-1)(qg-1) (3-1) x(11-1) =20

RSA algorithm: key generation

1. Choose two random large prime numbers p, g 3,11

2. Compute the product n=pgand ¢(n)=(p-1)(qg-1) (3-1) x(11-1) =20

3. Choose the public exponent, e, such that:
1<e<¢(n) andged(e, ¢(n) =1 Choose e=7

RSA algorithm: key generation

1. Choose two random large prime numbers p, g 3,11
2. Compute the product n=pgand ¢(n)=(p-1)(g-1) (3-1) x (11-1) =20
3. Choose the public exponent, e, such that:
1<e<¢(n) and ged(e, p(n)) =1 Choose e=7
4. Compute the secret exponent, d such that: Find d: 7d = 1mod 20
ed =1mod ¢(n) 7x3=21=1mod 20

d =e'mod((p-1)(g-1)) d=3

RSA algorithm: key generation

1. Choose two random large prime numbers p, g
2. Compute the product n=pgand ¢(n)=(p-1)(g-1)

3. Choose the public exponent, e, such that:
1<e<¢(n) and gcd(e, ¢p(n)) =1

4. Compute the secret exponent, d such that:
ed =1 mod ¢(n)
d=e'mod((p-1)(g-1)

5. Public key = (e, n)
Private key = (d, n)
Discard p, q, ¢(n)

RSA Encryption

Key pair: public key = (e, n)

Encrypt

— Divide data into numerical blocks < n

private key = (d, n)

— Encrypt each block:

Decrypt

c=m®modn

m =c? mod n

Pub key = (3, 33)
Pri key = (7, 33)

Encrypt 18 with public key:
182 mod 33 =24

Decrypt 24 with private key:
247 mod 33=18

Encrypt 29 with private key:
29’ mod 33=17

Decrypt 17 with public key:
173 mod 33 =29

RSA security

The security rests on the difficulty of factoring a large integer

Public key ={exponent, modulus }, or{e, n}

If you know the public key (3, 33), can you derive the private key?

RSA Security

Large keys make it difficult to find factors via an exhaustive search

Example: a 2048-bit modulus (n) and secret exponent (d):

n =
Oxa709e2f84ac0e21eb0caa018cf7f697f774e96f8115fc2359e9¢cf60b1dd8d4048d974cdf8422bef6be3c162b0
4b916f7ea2133f0e3e4e0eece164859bd9c1e0ef0357¢c142f4f633b4add4aab86c8f8895cd33fbf4e024d9a3ad6
be6267570b4a72d2¢c34354e0139e74ada665a16a2611490debb8e131a6¢ffc7ef25e74240803dd71a4fcd953
c988111b0aaSbbc4c57024fc5e8c4462ad9049¢c7f1abed859¢c63455fa6d58b5cc34a3d3206ff74b9e96¢c336db
acfOcdd18ed0c66796ce00ab07f36b24cbe3342523fd8215a8e77f89e86a08db911f237459388dee642dae7cb
2644a03e71ed5c6fa5077cf4090fafa556048b536b879a881628698f0c7b420c4b7

d=
0x10f22727e552e2c86ba06d7ed6de28326eef76d0128327cd64c5566368fdc1a9f740ad8dd221419a5550fc8
c14b33fa9f058b9fa4044775aaf5c66a999a7dadd4fdb8141c25ee5294ea6a54331d045f25¢c9a5f7f47960acba

e20fa27ab5669c80eaf235a1d0b1¢c22b8d750a191c0f0c9b3561aaa4934847101343920d84f24334d3af05fed

e0e355911¢c7db8b8de3bf435907¢c855c3d7eeede4f148df830b43dd360b43692239ac10e566f138fb4b30fb1a
f0603cfcfOcd8adf4349a0d0b93bf89804e7c2e24ca/615e51af66dccfdb71a1204e2107abbeed259f2cac917fa
fe3b029baf13c4dde7923c47ee3fec248390203a384b9eb773c154540¢c5196bce’

Elliptic Curve Cryptography (ECC)

Key Generation /S |

Using discrete numbers, pick s 5 _:' ; | x:: (

— A prime number as a maximum (modulus) ” - -

— A curve equation in the family _/
y2=x3+ax+ b (mod p) ;:' 0 ((~ ::"
where p is a large prime number H _ TN\

— A public base point on the curve, G = {“ :"—--x‘ .

— Private key: random integer, d | |

— Public key: computed from the private key, f | S

the base point, and the curve: dG = ’-x {“‘----x .

Catalog of elliptic curves

ECC vs. RSA

* RSA is still a widely used public key cryptosystem (but fading)
— Inertia & widespread implementations
— Simpler implementation

* ECC offers higher security with fewer bits than RSA
— ECC is faster for key generation & encryption
— Uses less memory
— NIST defines 15 standard curves for ECC
* But many implementations support only a couple (P-256, P-384)

Key length

Unlike symmetric cryptography,
not every number is a valid key with RSA

Comparable complexity:
—3072-bit RSA = 256-bit elliptic curve = 128-bit symmetric cipher
—15360-bit RSA = 512-bit elliptic curve = 256-bit symmetric cipher

For long-term security, ENISA (EU) and NIST (US) recommend:

AES: 256-bit keys RSA: 15,360-bit keys ECC: 512 bit-keys

Communication with public key algorithms

Different keys for encrypting and decrypting
No need to worry about key distribution!

Communication with public key algorithms

Alice Bob
Alice’s public key: K,

A 4

AN

Bob’s public key: K;

(Alice’s private key: K,) (Bob’s private key: K,)
=| Es(P) % . % D,(C) [=
encrypt message with decrypt message with
Bob’s public key Bob’s private key
=| o.0 % (% U E
decrypt message with encrypt message with

Alice’s private key Alice’s public key

Why Not Use Public Key Algorithms for All Encryption?

* Slow Performance
* Ciphertext expansion
* Vulnerability to chosen plaintext attacks (or guessing)

* Some algebraic relationships may be preserved

Integrity:
Cryptographic Hash Functions

Cryptographic hash functions - Properties

— Fixed-length output
— Deterministic
— Preimage resistant: Given H, it should be infeasible to find M such that H=hash(M)

— Second preimage resistant:
Given My, it should be infeasible to find M, such that hash(M,)=hash(M,)

— Collision resistant: It should be infeasible to find M, M’ such that hash(M) = hash(M?’)
— Uniform
— Avalance effect

— Efficient

Also called digests or fingerprints

Hash functions are the basis of integrity

* Not encryption

Hash functions are the basis of integrity

* Not encryption

* Can help usto detect:

— Masquerading:

* |Insertion of message from a fraudulent source

— Content modification:
* Changing the content of a message

— Sequence modification:
* Inserting, deleting, or rearranging parts of a message

— Replay attacks:
* Replaying valid sessions

Hash Algorithms

Use iterative structure like block ciphers do ... but use no key

* Example:

— Secure Hash Algorithm, SHA-1
e US standard for use with NIST Digital Signature Standard (DSS) — 160-bit hash

Hash Algorithms

Use iterative structure like block ciphers do ... but use no key

* Example:

— Secure Hash Algorithm, SHA-1
* Produces 160-bit hash values

* Successors
— SHA-2 (2001) - SHA-224, SHA-256, SHA-384, SHA-512
* Approved for use with the NIST Digital Signature Standard (DSS)
— SHA-3 (2015)
e Can be substituted for SHA-2

Example: SHA-1 Overview

* Prepare the message
— Append the bit 1 to the message
— Pad message with 0 bits so its length = 448 mod 512
— Append length of message as a 64-bit big endian integer

Example: SHA-1 Overview

* Prepare the message
— Append the bit 1 to the message
— Pad message with 0 bits so its length = 448 mod 512
— Append length of message as a 64-bit big endian integer

* Use an Initialization Vector (IV) = 5-word (160-bit) buffer:
a = 0x67452301 b = 0Oxefcdab89 ¢ = 0x98badcfe
d = 0x10325476 e = 0xc3d2elf0

Example: SHA-1 Overview

* Prepare the message
— Append the bit 1 to the message
— Pad message with 0 bits so its length = 448 mod 512
— Append length of message as a 64-bit big endian integer

* Use an Initialization Vector (IV) = 5-word (160-bit) buffer:
a = 0x67452301 b = 0Oxefcdab89 ¢ = 0x98badcfe
d = 0x10325476 e = 0xc3d2elf0

* Process the message in 512-bit chunks — 80 rounds
— Expandthe 16 32-bitwords into 80 32-bitwords via XORs & shifts
— Iterate 80 times to create a hash for this chunk
— Add this hash chunk to the result so far

SHA-2 Overview

64 rounds (256-bit hash)
80 rounds (512-bit hash)

A
(\
512-bits of Next 512-bits Last 512-bits of
message of message message
.2.56.-b|t. Hash Hash Hash
Il ol compression compression compression
Vector (IV) P P P l
\ 256-bit hash

IV bits defined by the standard

Popular (& formerly popular) Hash Functions

* 128 bits
MD5 * Linux passwords used to use this

SHA-1

160 bits — was widely used: checksum in Git & torrents = Gitalso supports SHA-256

* Designed by the NSA; published by NIST
* Variations: SHA-224, SHA-256, SHA-384, SHA-512 Believed to be secure

SHA-2 * Linux passwords (SHA-512)
* Bitcoin (SHA-256)
SHA-3 + 256 & 512 bit Believed to be secure
bcrypt < Blowfish cipher used for berypt password hashing in OpenBSD
3DES - Linux passwords used to use this "~ Designed to be slow!

Hash Collisions

Hashes are collision resistant, but collisions can occur

Pigeonhole principle

.....

— A hash is a fixed-size number of bits

— Every possible permutation of an arbitrary number
of bytes cannot fit into every permutation of 32 bytes! |

Collisions: The Birthday Paradox

How many people need to be in a room such that the probability that two
people will have the same birthdayis > 0.5?

Your guess before you took a probability course: 365 +2 =183

Collisions: The Birthday Paradox

How many people need to be in a room such that the probability that two
people will have the same birthdayis > 0.5?

Your guess before you took a probability course: 365 +2 =183

Answer: 23 n! . (365)

— . n
p(n) =1 3enm

Approximate solution for # people required to have a 0.5

chance of a shared birthday, where m = # days in a year it

~ V2xmx0.5

The Birthday Paradox: Implications

Searching for a collision with a pre-image (known message) is
A LOT harder than searching for two messages that have the
same hash

Strength of a hash function is approximately 2 (# bits)
— For SHA-256, # operations =

2128 = 3.4x10%

This shows why collisions are guaranteed in theory but practically
unachievable in secure hash functions

Data Integrity

How do we detect that a message has been tampered?
* A cryptographic hash acts as a strong checksum

* Associate a hash with a message
—we’re not encrypting the message
—we’re concerned with integrity, not confidentiality

* If two messages hash to different values, we know the messages are
different

H(M) #H(M')

But an attacker can create a new hash for a modified message

Integrity:
Message Authentication Codes and
Digital Signatures

MAC (also called a Keyed Hash)

Create a checksum that relies on a key for validation

Message Authentication Code (MAC)

Two forms:
hash-based & block cipher-based

HMAC: Hash-based MAC — RFC 2104

A MAC can be created from a cryptographic hash function

HMAC = Hash-based Message Authentication Code
HMAC(m, k) = H((opad & k) || H(ipad & k) || m))

where
H = cryptographic hash function
opad = outer padding 0x5¢c5¢c5c5c¢ ... (01011100...)
ipad = inner padding 0x36363636... (00110110...)
k = secret key
m = message
@ = XOR, || =concatenation

Basically, incorporate a key into the message before hashing it

Block Cipher Based MAC: CBC-MAC and CMAC

V=0 Plaintext, Plaintext, Plaintexty
A \ \ 4
> : > B
Key > Block cipher Key —» Block cipher | ------mmm- J Key —» Block cipher

A\ 4 \4 \ 4

Block N

Ciphertext, Ciphertext,

Block 0 Block 1 /

MAC = final ciphertext block — others are discarded

CMAC - Cipher-based Message Authentication Code

Using a MAC

Alice «— Both have the shared key, k » Bob

modification?
Message l R Message
m m'
HMAC(m, k)
MX - > MAC'
Compute MAC(m', k): MAC"

Authenticated Encryption with Associated Data (AEAD)

Encryption + Integrity in one step

AEAD adds an authentication tag to the ciphertext

Two popular types
— AES-GCM: CTR mode + hash
— ChaCha20-Poly1305: 128-bit tag — f(message and derived key)

Digital Signatures

MACs rely on a shared key

Anyone with the key can modify the message and create the correct MAC

Digital Signatures

MACs rely on a shared key

Anyone with the key can modify the message and create the correct MAC

Digital signature properties
— Only you can sign a message, but anyone can validate it
— You cannot copy the signature from one message to another
— If the message is modified, the signature will be invalid

— An adversary cannot forge a signature

Digital Signature Primitives

1. Key generation

{ secret_key, verification_key }:= gen_keys(key_size)
2. Signing

signature := sign(message, secret_key)
3. Validation

is_valid := verify(verification_key, message, signature)

Digital Signature Primitives

1. Key generation

{ secret_key, verification_key }:= gen_keys(key_size)
2. Signing

signature := sign(message, secret_key)
3. Validation

is_valid := verify(verification_key, message, signature)

We sigh hash(message) instead of the message
— We’d like the signature to be a small, fixed size
— We may not need to hide the contents of the message

— We trust hashes to be collision-free

Digital Signatures & Public Key Cryptography

Public key cryptography enables digital signatures
secret_key = private key
verification_key = public key

Alice encrypts a message with her private key S = Ea(M)

Anyone can decrypt it using her public key

Da(S) = Da(Es(M)) =M

Nobody but Alice can create S

Conceptual View of Using Digital Signatures

Alice Bob

H(P)

Alice generates a hash of the message, H(P)

Conceptual View of Using Digital Signatures

Alice Bob

H(P)

l

| S=Ea(HP)

Alice encrypts the hash with her private key
This is her signature

Conceptual View of Using Digital Signatures

Alice modification? Bob

i

l

A\ 4

M

H(P)-

l

| S=EatHeP)

A\ 4

Alice sends Bob the message & the encrypted hash

Conceptual View of Using Digital Signatures

Alice mod‘ificatlion? Bob
= H(P) > [=[| HP) —
=—= | = =
_— lS=Ea(H(P)) > = D,(S)
770 — =]
77

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sent by Alice

Conceptual View of Using Digital Signatures

Alice mod‘ificatlion? Bob
= H(P) > [=[| HP) —
=—= | = =
_— lS=Ea(H(P)) > = D,(S)
70— =]
7

If the hashes match, the signatureis valid
= the encrypted hash must have been generated by Alice

Popular Digital Signature Algorithms

Digital Signature Algorithms improve security vs. public key encryption

DSA: Digital Signature Algorithm

Message
ECDSA: Elliptic Curve Digital Signature Algorithm |
EdDSA: Edwards-curve Digital Signature Algorithm Hash function
l
* signature: S:=E_; ., (H(M)) HalSh
* verification = H(M) = D, 4,(S) g el
|

Signature

Digital signatures & non-repudiation

Digital signatures provide
* Non-repudiation

* Proof of integrity

Public Keys as |ldentities

A public signature verification key can be treated as an identity

Certificates: Identity Binding

ldentity Binding

* How does Alice know Bob’s public key is really his?

e Get it from a trusted server?

ldentity Binding — Another Option

* Have a trusted party sign Bob’s public key
* Once signed, itis tamper-proof

* But we need to know it’s Bob’s public key and who signed it
— Create & sign a data structure

A: ”| am Bob”

B: My key: Kg
Everyone trusts Trent

C: Trent saysits Bob 7

X.509 Certificates

ISO introduced a set of authentication protocols

X.509: Structure for public key certificates:

Issuer = Certificate Authority (CA)

/
Certificate data Signature/
k
version | serial # . Is_su_er Signature Validity
D algorithm (from-to)
Name .
Signature
Subiect (signed by CA)
— . Public key
Distinguished name (algorithm & key)
\ X.509 v3 Digital Certificate

o

User’s name or domain, organization, locality, state, country, etc.

X.509 certificates

To validate a certificate
Verify its signature:

1. Gettheissuer (CA) from the certificate
2. Validate the certificate’s signature against

the issuer’s public key

Certificate data Signature
Issuer Si i

. . el gnature Validity

version | serial # Dlst:;gmshed algorithm (from-to)
ame
Signature
Subiject (signed by CA)
T—_— Public key
Distinguished name {algorithm & key)
X.509 v3 Digital Certificate

— Hash contents of certificate data (SHA-256)
— Use CA’s public key to validate the CA’s signature

Obtain CA’s public key (certificate) from trusted source

Certificates prevent someone from using a phony public key
to masquerade as another person/company

...If you trust the CA

Certificate Authorities (CAS)

How do you know the public key of the CA?
You can get it from another certificate! = thisis called certificate chaining

Name: US Certification Authority

Name: Bob

Public key: 9f0f544f163...

Public key: abacé6cfbd...

Issuer: US Certification Authority

Issuer: Rutgers University CA

Signature: 20fac707910...

Signature: 25d0527b9f...
Root Certificate

Name: Rutgers University CA Name: State of NJ CA -

Public key: c1f07f8aac9d... Public key: 33346da91...

Issuer: State of NJ CA Issuer: US Certification Authority

Signature: 5c062ee261... Signature: e693eac849...

Certificate Authorities (CAS)

But trust must start somewhere

You need a public key you can trust — this is the root certificate
— Apple Keychain
— Windows Certificate Store via the Microsoft Management Console (mmc)
— Android Credential Storage

Key revocation

* Used to invalidate certificates before expiration time
* Certificate revocation list (CRL)

* Problems
— Authorization
— Delivery/synchronization
— Client attention

Code Integrity

We can sign code as well

* Validate integrity of the code
— If the signature matches, then the code has not been modified

* Enables
— Distribution from untrusted sources
— Distribution over untrusted channels
— Detection of modifications by malware

* Signature = encrypted hash signed by trusted source
— Does notvalidate the code is good ... just where it comes from

Code Integrity: signed software

* Windows since XP: Microsoft Authenticode
— SignTool command
— Hashes stored in system catalog or sighed & embedded in the file
— Microsoft-tested drivers are signed

* macOS

— codesign command
— Hashes & certificate chain stored in file

* Also Linux, Android, & iOS

Code signing: Microsoft Authenticode

* Aformat for signing executable code (dll, exe, cab, ocx, class files)

e Software publisher:
— Generate a public/private key pair

— Getadigital certificate from a certification authority (CA) that is enrolled in the Microsoft Trusted Root
Certificate Program

— Generate a hash of the code to create a fixed-length digest
— Encrypt the hash with your private key

— Combine digest & certificate into a Signature Block

— Embed Signature Block in executable

Per-page hashing

* Integrity check when program is first loaded

Verifying “Microsoft PowerPoint.app”..

©)

* Per-page signatures —improved performance

— Check hashes for every page upon loading (demand paging)

* Per-page hashes can be disabled optionally on both Windows and
macOS

Windows code integrity checks

* Implemented as a file system driver
— Works with demand paging from executable
— Check hashes for every page as the page is loaded

* Hashes stored in system catalog or embedded in file along with X.509
certificate

* Check integrity of boot process
— Kernel code must be signed or it won’t load

— Drivers shipped with Windows must be certified or contain a certificate from
Microsoft

Diffie-Hellman Key Exchange (DHKE)

Key distribution algorithm

— Share a secret key over a non-secure channel

— Based on the difficulty of computing discrete logarithms in a finite field vs. the ease
of calculating exponents

Negotiate a secret common key without fear of eavesdroppers

Diffie-Hellman Key Exchange (DHKE)

* All arithmetic performed in a
field of integers modulo some large number

* Both parties agree on
1. alarge prime numberp
2. andanumbera<p

* Each party generates a public/private key pair

Private key for useri: X;

Public key for useri: Y;= o mod p

Diffie-Hellman Key Exchange (DHKE)

* Alice has secret key X, * Bob has secret key Xz
* Alice sends Bob public key Y, * Bob sends Alice public key Y5

* Alice computes

K = (Bob’s public key) (Alice’s private key) mod p

Diffie-Hellman Key Exchange (DHKE)

* Alice has secret key X, * Bob has secret key Xz
* Alice sends Bob public key Y, * Bob sends Alice public key Y5
* Alice computes * Bob computes

K=Y;*“modp

K’ = (Alice’s public key) (Bob’s private key) mod p

Diffie-Hellman Key Exchange (DHKE)

* Alice has secret key X, * Bob has secret key Xz
* Alice sends Bob public key Y, * Bob sends Alice public key Y
* Alice computes * Bob computes
K=Y *modp K=Y *modp
e expanding: * expanding:
K =Y;“modp K =Y;®modp
= (a** mod p)** mod p = (a”* mod p)*® mod p
= modp =" *modp
K=K’

Kis a common key, known only to Bob and Alice

Diffie-Hellman simple example

Assume p=1151, a=57

* Alice’s secret key X, = 300 * Bob’s secret key X = 25
» Alice’s public key Y, =573 mod p =282 * Bob’s public key Yz =572° mod p = 1046
* Alice computes * Bob computes
K=Ymodp =10463mod p K=Y modp =28225mod p
K=105 K=105

Given p=1151, a=57, Y,=282, Yz=1046, you cannot get 105

Why are we sill looking at this?

Why not just use RSA or ECC to encrypt a random key?

Strengths & Weaknesses

* Public key algorithms:
— Good at exchanging secrets
— Bad at encrypting large amounts of data

* Symmetric algorithms:

— Good at bulk encryption but require a shared key

Hybrid Cryptosystems

» Session key: randomly-generated key for one communication session
* Use a public key algorithm to send the session key

* Use a symmetric algorithm to encrypt data with the session key

Public key algorithms are never used to encrypt messages

— MUCH slower; vulnerable to chosen-plaintext and algebraic attacks

Communication with a hybrid cryptosystem

Alice Bob

€ Bob’s public key: Kg
Pick a random session key, K

o= —K

encrypt session key with K'=D,(Ex(K))
Bob’s public key Bob decrypts K with
his private key

A 4

Now Bob knows the secret session key, K

Communication with a hybrid cryptosystem

Bob
€ Bob’s public key: K,
K= Dy (Eg(K))

74 DW(©) .
>

decrypt message using a
symmetric algorithm and
key K

Alice

. Eq(P)

encrypt message using a
symmetric algorithm and
key K

A 4

N\

Communication with a hybrid cryptosystem

Bob
€ Bob’s public key: K,

CE(K) K= Dy(E5(K)

5 B
() 7
5 -8

encrypt message using a
symmetric algorithm and
key K

Alice

A 4

A 4

AN

decrypt message using a
symmetric algorithm and
key K

Forward Secrecy

Private keys need to be protected

Pick a session key & Bob decrypts the session key
encrypt it with the Bob's public key with his private key

h 4

Suppose an attacker steals Bob’s private key
— Future & past messages can be compromised

Security rests entirely on the secrecy of Bob's private key

Forward Secrecy

Forward secrecy

— Compromise of long-term keys does not compromise past session keys

— There is no one secret to steal that will compromise multiple messages

Achieving Forward Secrecy

Use ephemeral keys for key exchange
+ session keys for communication

Diffie-Hellman key exchange is commonly used for key exchange

— Generate a set of keys per session
— Not recoverable as long as private keys are thrown away

Long-term key: Used for identity verification, authentication

Ephemeral key:
Used for establishing a session key —thrown away immediately

Session key: Used to encrypt data for a single session

Communication with a hybrid cryptosystem (DHKE)

Alice Bob
Create a random Diffie-Hellman key pair: X,, Y, Create a random Diffie-Hellman key pair: Xg, Yg
C = Y;Amod p ¢ Bob’s D-H public key: Yg

C =Y, mod p

A 4

Alice's D-H public key: Y,

C Key derivation C Key derivation K

I
DN ~
N\
il

= E«(P) D«(C)
— ' ” .
= 4DK(C)% ()=
— 7 —
decrypt message using a encrypt message using a
symmetric algorithm and symmetric algorithm and

key K key K

Cryptographic systems: summary

« Symmetric ciphers
— Based on SP-networks (usually) = substitution & permutation sequences

Cryptographic systems: summary

« Symmetric ciphers
— Based on SP-networks (usually) = substitution & permutation sequences

* Asymmetric ciphers — public key cryptosystems
— Based on trapdoor functions

Cryptographic systems: summary

« Symmetric ciphers
— Based on SP-networks (usually) = substitution & permutation sequences

* Asymmetric ciphers — public key cryptosystems
— Based on trapdoor functions

* Hybrid cryptosystem
— Public key algorithm for key exchange, symmetric algorithm for messages

Cryptographic systems: summary

Symmetric ciphers
— Based on SP-networks (usually) = substitution & permutation sequences

* Asymmetric ciphers — public key cryptosystems
— Based on trapdoor functions

Hybrid cryptosystem
— Public key algorithm for key exchange, symmetric algorithm for messages

Key establishment algorithms

— Diffie-Hellman Enables secure communication without
— Public key knowledge of a shared secret

Cryptographic systems: summary

Symmetric ciphers
— Based on SP-networks (usually) = substitution & permutation sequences

Asymmetric ciphers — public key cryptosystems
— Based on trapdoor functions

Hybrid cryptosystem
— Public key algorithm for key exchange, symmetric algorithm for messages

Key establishment algorithms

— Diffie-Hellman Enables secure communication without
— Public key knowledge of a shared secret

Forward secrecy
— Establish session keyvia ephemeral keys

Looking ahead

A g e e =TT i
S o o T e S g = A ML 28

U
(@

Quantum Computers & Cryptography

Once (if) useful quantum computers
can be built, they can:

TIMETO

* Factor efficiently

— Shor’s algorithm factors numbers
exponentially faster

— RSA will not be secure anymore

* Find discrete logarithms efficiently

— Diffie-Hellman key exchange & ECC wiill
not be secure

Not all is bad
Symmetric cryptography is largely
immune to attacks
Some optimizations are predicted:

Crack a symmetric cipherin 2"?vs. 2"iterations

Quantum-proofing cryptography

Quantum computing is not faster at everything
Only a few algorithms currently identified where quantum computing offers an advantage

31108953 1190018662
104910828 2598220447 ,

3027417464 3006531459 Which 3 "““;bers sum to
2376520867 804531264 5656746864

2430217482 1122428373

NIST Releases First Post-Quantum Encryption Standards

August 13, 2024: Releases first set of standards:
CRYSTALS-Kyber, CRYSTALS-Dilithium, Sphincs+ and FALCON

1. FIPS 203 - ML-KEM
Module-Lattice-Based Key-Encapsulation Mechanism,
based on CRYSTALS-Kyber algorithm

2. FIPS 204 - ML-DS
Module-Lattice-Based Digital Signature Algorithm,
based on the CRYSTALS-Dilithium algorithm

3. FIPS 205-SLH-DSA - backup to ML-DS
Stateless Hash-Based Digital Signature Algorithm)

4. (draft) FIPS 206 - FN-DSA
Fast-Fourier Transform over NTRU-Lattice-Based Digital Signature Algorithm

5. (2025 proposal) HQC - backup to ML-KEM
Key Encapsulation Mechanism based on error correcting codes

The End

The End

The End

The End

	Slide 1
	Slide 2
	Slide 3: Symmetric Cryptography: Terms
	Slide 4: Communicating with symmetric cryptography
	Slide 5: Key Distribution
	Slide 6
	Slide 7: McCarthy’s Spy Puzzle (1958)
	Slide 8: McCarthy’s Spy Puzzle
	Slide 9: Solution to McCarthy’s puzzle
	Slide 10: One-way functions
	Slide 11: Example: Middle Squares
	Slide 12: Other One-Way functions
	Slide 13: Trapdoor functions
	Slide 14: Trapdoor functions
	Slide 15: Trapdoor functions
	Slide 16: Public-key cryptography
	Slide 17: RSA Public Key Cryptography
	Slide 18: RSA algorithm: key generation
	Slide 19: RSA algorithm: key generation
	Slide 20: RSA algorithm: key generation
	Slide 21: RSA algorithm: key generation
	Slide 22: RSA algorithm: key generation
	Slide 23: RSA Encryption
	Slide 24: RSA security
	Slide 25: RSA Security
	Slide 26: Elliptic Curve Cryptography (ECC)
	Slide 28: ECC vs. RSA
	Slide 29: Key length
	Slide 30: Communication with public key algorithms
	Slide 31: Communication with public key algorithms
	Slide 32: Why Not Use Public Key Algorithms for All Encryption?
	Slide 33
	Slide 34: Cryptographic hash functions - Properties
	Slide 35: Hash functions are the basis of integrity
	Slide 36: Hash functions are the basis of integrity
	Slide 37: Hash Algorithms
	Slide 38: Hash Algorithms
	Slide 39: Example: SHA-1 Overview
	Slide 40: Example: SHA-1 Overview
	Slide 41: Example: SHA-1 Overview
	Slide 42: SHA-2 Overview
	Slide 43: Popular (& formerly popular) Hash Functions
	Slide 45: Hash Collisions
	Slide 46: Collisions: The Birthday Paradox
	Slide 47: Collisions: The Birthday Paradox
	Slide 48: The Birthday Paradox: Implications
	Slide 49: Data Integrity
	Slide 50
	Slide 51: MAC (also called a Keyed Hash)
	Slide 52: HMAC: Hash-based MAC – RFC 2104
	Slide 53: Block Cipher Based MAC: CBC-MAC and CMAC
	Slide 54: Using a MAC
	Slide 55: Authenticated Encryption with Associated Data (AEAD)
	Slide 56: Digital Signatures
	Slide 57: Digital Signatures
	Slide 58: Digital Signature Primitives
	Slide 59: Digital Signature Primitives
	Slide 60: Digital Signatures & Public Key Cryptography
	Slide 61: Conceptual View of Using Digital Signatures
	Slide 62: Conceptual View of Using Digital Signatures
	Slide 63: Conceptual View of Using Digital Signatures
	Slide 64: Conceptual View of Using Digital Signatures
	Slide 65: Conceptual View of Using Digital Signatures
	Slide 66: Popular Digital Signature Algorithms
	Slide 67: Digital signatures & non-repudiation
	Slide 68: Public Keys as Identities
	Slide 69: Certificates: Identity Binding
	Slide 70: Identity Binding
	Slide 71: Identity Binding – Another Option
	Slide 72: X.509 Certificates
	Slide 73: X.509 certificates
	Slide 74: Certificate Authorities (CAs)
	Slide 75: Certificate Authorities (CAs)
	Slide 76: Key revocation
	Slide 77: Code Integrity
	Slide 78: We can sign code as well
	Slide 79: Code Integrity: signed software
	Slide 80: Code signing: Microsoft Authenticode
	Slide 82: Per-page hashing
	Slide 83: Windows code integrity checks
	Slide 85
	Slide 86: Diffie-Hellman Key Exchange (DHKE)
	Slide 87: Diffie-Hellman Key Exchange (DHKE)
	Slide 88: Diffie-Hellman Key Exchange (DHKE)
	Slide 89: Diffie-Hellman Key Exchange (DHKE)
	Slide 90: Diffie-Hellman Key Exchange (DHKE)
	Slide 91: Diffie-Hellman simple example
	Slide 92: Why are we sill looking at this?
	Slide 93
	Slide 94: Strengths & Weaknesses
	Slide 95: Hybrid Cryptosystems
	Slide 96: Communication with a hybrid cryptosystem
	Slide 97: Communication with a hybrid cryptosystem
	Slide 98: Communication with a hybrid cryptosystem
	Slide 99: Forward Secrecy
	Slide 100: Private keys need to be protected
	Slide 101: Forward Secrecy
	Slide 102: Achieving Forward Secrecy
	Slide 103: Communication with a hybrid cryptosystem (DHKE)
	Slide 104: Cryptographic systems: summary
	Slide 105: Cryptographic systems: summary
	Slide 106: Cryptographic systems: summary
	Slide 107: Cryptographic systems: summary
	Slide 108: Cryptographic systems: summary
	Slide 109: Looking ahead
	Slide 110: Quantum Computers
	Slide 111: Quantum Computers & Cryptography
	Slide 112: Not all is bad
	Slide 113: Quantum-proofing cryptography
	Slide 114: NIST Releases First Post-Quantum Encryption Standards
	Slide 115
	Slide 116: The End
	Slide 118: The End
	Slide 120: The End
	Slide 122: The End

